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The main difficulty in second-order diffraction analysis stems from the contribution 
of the second-order potential, which obeys an inhomogeneous free-surface boundary 
condition. In some applications it is sufficient to know the second-order hydro- 
dynamic force, which can be calculated without explicitly evaluating this second- 
order potential. This technique cannot however be used for calculating other 
quantities such as the hydrodynamic pressure at any point, the sectional force and 
bending moment in the cylinder or the free-surface elevation due to the second-order 
effects. This paper provides a detailed analysis of the second-order diffraction 
problem of a uniform vertical circular cylinder in regular waves. This furnishes 
results not only on the cylinder surface, but also on the free surface, and in principle 
in the fluid domain surrounding the body. The analysis may help to throw some light 
on the physical interpretation of the second-order theory and its mathematical 
description. Moreover, this information is intended to complement the development 
of general numerical methods for arbitrary bodies. 

1. Introduction 
Derivation of an analytical solution for the second-order potential due to 

diffraction by a vertical circular cylinder is an important step in checking numerical 
methods developed for arbitrary bodies. To the authors’ knowledge, however, no 
complete solution has so far been obtained. Previous diffraction studies either 
assumed an incorrect radiation boundary condition, or failed to satisfy the 
inhomogeneous free-surface boundary condition. An expression for the second-order 
diffraction force due to regular waves in water of infinite depth has however been 
derived, by Lighthill (1979). He obtained an explicit expression for the second-order 
force without deriving explicitly the second-order potential ; rather, use was made of 
an assisting potential satisfying the homogeneous form of the second-order free- 
surface boundary condition. The corresponding analysis in finite water depth was 
developed by Molin (1979). Unfortunately, these formulations involved a free- 
surface integral which oscillated rapidly and converged slowly. Eatock Taylor & 
Hung (1987) subsequently overcame this difficulty by developing a closed-form 
expression for the evaluation of this integral in the far field. 

An alternative approach to the second-order problem is to employ an integral 
equation. Through the application of Green’s theorem and use of a double-frequency 
Green function, Garrison (1984) formulated the second-order problem in regular 
waves by expressing the velocity potential as a distribution of wave sources and 
dipoles over the body surface and the free surface. This formulation is similar to the 
method of using an integral equation to solve the first-order problem, with the 

I9 FLM 240 



572 F. P .  Chau and R. Eatock Taylor 

exception of an additional free-surface integral. More recently the integral equation 
formulation was re-examined by Kim & Yue (1989) for axisymmetric bodies and by 
Chau & Eatock Taylor (1988) for arbitrary bodies. Special attention was given to the 
treatment of the troublesome free-surface integral, and different methods of 
accelerating its convergence were demonstrated. 

Because the calculation of the complete second-order solution is rather 
troublesome, various approximations have also been investigated. Thus Newman 
(1990) derived a simple approximation to estimate the second-order potential at 
large depths of submergence. This is particularly significant in determining the 
second-order vertical force on deep-draft bodies, but results have only been obtained 
for some simple geometries. 

Lighthill’s idea was subsequently extended by Eatock Taylor, Hung & Chau 
(1989). By defining the assisting potential in a suitable manner, they showed how the 
exact distribution of the second-order potential on the submerged surface of a body 
can be calculated without solving the complete second-order problem. The idea has 
been applied to  a vertical circular cylinder, for which a closed-form expression has 
been derived. That formulation, however, can only provide the distribution of the 
potential on the body surface. I n  the present paper we show how one can derive a 
closed-form expression which furnishes results not only on the body surface but in 
the fluid domain surrounding the body. A method of eigenfunction expansions is 
used. The following sections describe the theoretical background and the essential 
numerical steps by which this formulation is implemented. Representative second- 
order results are also presented. 

2. Formulation in cylindrical polar coordinates 
We employ a cylindrical polar system of coordinates ( r ,  0, z ) ,  with the origin on the 

undisturbed surface and z pointing upwards. Based on the standard Stokes 
expansion, we use first- and second-order complex velocity potentials qY1) and qP), 
with corresponding time harmonic variations exp ( - i d )  and exp ( - 2irt). Subscripts 
i and s will be used to denote incident and diffracted waves respectively. The problem 
for a vertical surface-piercing cylinder (of radius a) in the fluid domain 52 (of constant 
depth d )  may then be formulated as follows: 

first-order potential 

a , p  
- = 0  on z = - d ,  

a2 
(2.3) 
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second-order potential 

Here v = crZ/g, (2.10) 

and k is the wavenumber for the first-order problem. The inhomogeneous term F may 
be regarded as an effective pressure distribution on the free surface which is given by 

In polar coordinates, the expressions for #jl), #12), and #L1) are given by Mei (1983) 
as follows : 

igAcosh k ( z + d )  O0 
(1) - E ,  im J,(kr) cos (me), " - a cosh (kd )  m-O 

3iA2a cosh 2k(z + d) O0 
(2) - - C e,imJ,(2kr) cos (m6), '' - 8 sinh4 (kd )  m-O 

(2.12) 

(2.13) 

Jm(ka) H,(kr) cos (me), (2.14) 
igA cosh k ( z + d )  5 

") = 7 cosh (kd )  m-o "H,(ka)  

where A is the amplitude of the fist-order wave; and E ,  = 1 for m = 0 and 
E ,  = 2 otherwise. J, and H ,  are respectively the Bessel function and Hankel function 
of the first kind of order m. The problem then is to determine #r). 

3. Second-order solution based on Green's theorem 
It can readily be shown that #iz) may be expressed in terms of various integral 

equations, derived from the different forms of Green's theorem. Based on Green's 
second identity, the integral equation can be interpreted as a representation of the 
velocity potential by a mixed distribution of sources and dipoles. If we use the 

19-2 
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double-frequency linear wave source Green function (defined as G) we can express q5p) 
as a sum of integrals over the body surface, the free surface and an exterior boundary 
in the form of a vertical cylinder at large distance from the body. By making use of 
the asymptotic expression for q5P) given by Molin (1979), and the method of 
stationary phase, i t  can be shown that the integral over the exterior surface vanishes 
a t  infinity. Thus 

-[rrdrrdBP(?=)Q(Fo,rl. (3.1) 

in which ~ ~ ( r ~ ,  O,, zo)  is the coordinate of a representative field point and F(r ,  8,  z )  is the 
coordinate of the integration points on the boundary. 

There can be a computational advantage in solving an equation such as (3.1) if the 
Green function can be modified to satisfy the additional boundary condition 

- = 0  
aG 
ar (3.2) 

on the body surface. The unknown term in the integrand then vanishes. Such a choice 
of Green function, denoted by G,, would provide an explicit solution of the potential 
in terms of the incident wave and the free-surface integral, i.e. 

q5:z)(q = -[ddzradOC,(r,.q- a@) ar (- T ) -  [rrdr[~dOC,(r, ,QF(q. (3.3) 

The vertical circular cylinder is one of the few geometries for which G, can be 
determined explicitly, by using separation of variables in the cylindrical polar 
coordinate system. 

4. Construction of the Green function 

boundary-value problem defined by the following equations : 
The Green function G, appropriate to the present problem is the solution of the 

1 ”) b - r  (4.1) 
a i a  l a 2  -+--+--+- G - -6 ( r - r , )6 (O-Oo)6(z -zo)  in 52, 

ar2 ra r  r 2 M 2  az2 

(4.4) -- aGb 4vGb = 0 on z = O ,  
az  
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where K is the real root of 
K tanh (Kd) = 4v. (4.6) 

As suggested by Chen & Hudspeth (1982), one of the approaches to constructing G ,  
is to determine its expansion in a series of associated eigenfunctions. The Dirac delta 
functions in the 8- and x-coordinates are first expanded into complete orthonormal 
sets of eigenfunctions in their respective domains, i.e. 

in which the functions Z,(K,Z) form an orthonormal set in the interval -d < z < 0 
and are defined by 

1 
Z,(K,Z) = - cosh (K(x+d))  for n = 0 

ib$ 

1 
= - cos (K,(x+d)) for n > 0. 
4 

K,(n > 0 )  are the positive real roots of 

K, tan ( K ~  d )  = - 4v 

and the normalizing constants N ,  are given by 

N ,  = @, cosh' ( K ( z + ~ ) )  dz 

sinh (2Kd) + 2Kd d ( K 2  - 16V') + 4V 
for n = O ;  - - - - 

4K 2(K2- 16~') 

N ,  = Id  COS' (K,(Z+d))dZ 

(4.9) 

(4.10) 

(4.11) 

sin ( 2 ~ , d ) + 2 ~ , d  -d(~;+16~')+4v 
- - for n > 0. (4.12) - - 

4 ~ n  - 2 ( K i - k  16~')  

Substituting the above expressions into (4.1) gives 

-+--+-- a 2  1 a 1 a 2  + E ) G b  ( ar2 r a r  ?ae2 a 2  
m a  1 

= -S(r-ro)  C E ~ Z , ( K , Z ~ ) Z , ( K , Z )  cos (m(8-8,)). (4.13) 
2 R  m-0 n-0 

A similar expansion is assumed for G, such that 

(4.14) 
1 " "  

'b = - E m q m n ( r ,  Zn(Kn Z n ( K n  z, cos ( m ( e - e o ) ) ,  
2~ m-0 n-0 

with the r-dependent coefficients qmn(r, r,) to be determined. 
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Substituting (4.14) into (4.1), (4.2) and (4.5) yields 

Equation (4.15) can now be replaced by the following sets of equations: 

gmn(ri, ro) = g m n ( r i ,  T O )  

(i.e. the function gmn is continuous a t  r = r,) ; 

(i.e. the derivative of gmn has a discontinuity at r = ro) .  
These additional end conditions across r = r,  have been deduced 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

by first 
integrating (4.15) throughout the small interval (Ti -6 ,  ro +e), and then considering 
the limiting form of the resulting differential equation as e -+ 0. In order to satisfy the 
limiting conditions at  the point r = ro,gmn must behave in such a way that dgmn/dr 
has a jump of magnitude l/r, as r -+ r,. 

In order to obtain a convenient reformulation of the problem, two equivalent 
boundary-value problems are defined such that, for a given ro, gmn is given by gk, 
when r < r,, and by g:n when r > r,. These have the following properties: 
boundary-value problem I (a  < r < r,) 

(4.21) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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By solving the above ordinary differential equations with the prescribed boundary 
conditions, one obtains 

(4.27) 

(4.28) 

Here the prime denotes differentiation with respect to the argument, and I ,  and K ,  
are the modified Bessel functions of the first and second kinds respectively. When 
n = 0, K,  = i K  : the corresponding functions of real arguments K r  etc. are J, and H g ) .  
Use has here been made of the Wronskian relation 

(4.29) 
1 K,(x)Ip(x)-I,(x)K~(x) = -. 
X 

After substitution of (4.27) and (4.28) into (4.14), the expression for C, may be 
written in a compact form as 

- 1  w w 
K m ( K n r > )  [ l m ( K n r < ) K m ( K n U )  -ym(KnU)&(KnT. . ) ]  

= z n : o : o E m  K,(K,U) 

Z n ( ~ a ~ o )  Zn(KnZ) cos (m(e-eo)) (4.30) 

where r ,  = max (ro,  r ) ,  r <  = min (ro, r ) .  (4.31) 

5. Expression for the second-order diffracted potential 

diffracted potential may be recovered as follows : 
By substitution of (4.30) for G, into the integral equation (3.3), the second-order 

After inserting the Fourier cosine series expressions for F and #), making use of 
the Wronskian relation and employing the orthogonality of the eigenfunctions of 0 
and z, one can reduce (5.1) to 

W 

$S")CFO) = {JamrdrEmFm(r) 2 ~n(KnZo)zn(o )  
m-o n-0 
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30 

F ( r ,  0) = emFm(r) cos mB; 
m-0 

i3A2u 
8 sink4 (Ed) 

D m = -  im Jm( 2kr)  ; 

- 2k sinh (2kd) -4v cosh ( 2 k d )  - 
4k2 + K; 

In particular, for ro = a (i.e. on the body surface): 

It may be observed that, apart for the notation used for Fm(r), the above result is 
identical to that obtained in a completely different manner by Eatock Taylor et al. 

The hydrodynamic force, P,  in the direction of the waves due to the second-order 
(1989). 

diffracted potential can then be evaluated as follows : 

P = - 2iup @, dz fi' a dB $S2)(a) cos 8, 

= - 2irpan l, dz $if\, 

where 4;:; is the component of $i2) that is proportional to cos8, in (5.7), and p is the 
fluid density. After substitution of the corresponding expression for $$, this gives 

This is identical to the corresponding expression for wave force given by Eatock 
Taylor & Hung (1987). 

In view of the controversy that has surrounded earlier attempts to solve the 
second-order diffraction problem, it is appropriate to examine the solution given in 
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(5.2) in the context of previous deficiencies. The crucial limitation of most solutions 
published hitherto is that they do not appear to satisfy the inhomogeneous free- 
surface boundary condition (2.9) which characterizes the second-order problem. We 
need to show that the expression for $A2) introduced in (5.2) does satisfy (2.9) in a 
limiting sense. Suppose we define the function 

(5.10) 

It seems that the expression for q5p) given in (5.2) contradicts the inhomogeneous 
free-surface boundary condition (2.9), because it would appear that Y(0) = 0. The 
contradiction can be explained, however, by the fact that the series representation 
of Y(z) is not a continuous function of z at z = 0. The series solution given in (5.2) does 
not yield a uniformly convergent result for Y(z) as z approaches zero : but the series 
representation of Y(z) does approach P(r,  0). Thus by means of arguments such as 
given by Friedman (1956), expression (5.2) can indeed be shown to satisfy the 
inhomogeneous free-surface boundary condition. Details are provided in Appendix 
A. 

6. Numerical implementation 
The second-order diffracted potential can be evaluated explicitly from expression 

(5.2). It is clear, however, that owing to the complexity of the infinite radial line 
integrals associated with the inhomogeneous free-surface boundary condition, 
special numerical procedures have to be used. These are summarized here, with 
further details given in Appendices B and C. 

The starting point for the integration is use of a Gaussian 3-point adaptive 
technique. In order to speed up convergence, however, numerical quadrature is only 
employed up to a finite range and this is complemented by an analytical integration 
to infinity. The infinite integral can be evaluated by substituting Hankel’s 
asymptotic expansions in the integrand, whose typical terms are then triple products 
of Bessel and Hankel functions. Eventually, the integrand can be represented by 
summations of polynomials of various orders. Integration of each term of the 
polynomial satisfies a simple recurrence relationship from which its value can be 
easily calculated. 

We first rewrite the inhomogeneous term in the second-order free-surface boundary 
condition (2.1 l),  using the linearized free-surface boundary condition (2.4) and the 
following relationship (which in the case of a vertical circular cylinder holds for all 
2 )  : 

We thus obtain 
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#il) and 4;) are given 
more conveniently by 

Here 

by (2.12) and (2.14) respectively, but they can be expressed 

a, 

#)(r ,  8, Z) = C Tm(r, z )  eim8, (6.3) 
m--m 

-igA cosh ( k ( z + d ) )  
2a cosh (kd) Tm(r, z )  = - i" { H ,  (kr  ) + H;F, (kr)}  

(where * denotes complex conjugate) ; and 

igA cosh ( k ( z  + d ) )  Jm(ka) 
a cosh (kd) Hm(ka) Sm(r ,  2) = - H m  (kr) .  

Examination of (6.2) reveals that its typical elements contain quadratic products 
of the linearized velocity potentials and their derivatives: they are of the form 

In order to identify harmonics in 8, the double summation in the above expression 
is rearranged to give 

p--m q--co p--m (q--m 

and similarly for other components. With this rearrangement, (6.2) now becomes 
a, 

(6.9) F(r,B) = I: Fp(r)eip8 

with 
m 

and Fp(r) = { g k 2 ( 3  tanh2 ( k d ) -  1)[Sp-qSq+2Tp-qSq] 
q--m 

. 
2-0 

(6.10) 

(6.11) 

Returning now to the explicit expression for #iz) given in (5.2), we rewrite the free- 

I ,  = IFL+IFZ. (6.12) 

surface integral, denoted here by I F ,  in terms of two line integrals such that 

In this 
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As discussed below, rs is chosen such that quadrature is only required over a finite 
range (IF1), but complemented by an explicit integration to infinity (IF'). 

Prior to deriving the aforementioned analytical expression for IF' one can further 
simplify the integrand by neglecting the contributions due to the evanescent modes 
(n > 0) and those due to the circumferential derivatives in Fm(r) at large values of r .  
Appendix B shows how the resulting integral can be transformed, using integration 
by parts, so that the only remaining integral (denoted by IF,)  no longer involves 
radial derivatives. It may be expressed as 

m m 
IF ,  = (3 tanh2 ( k ~ ? ) + k ~ - ~ ~ )  rdr  [S,_,Sg+2T,_,S,]Hm(~r) .  (6.15) 

Each term of the series 

and 

Jr, g--m 

involves two parts, which are of the form 

I!:,, = \ rdrH,(kr)H,(kr)H,(Kr); 
m 

J rs 
f m  

(6.16) 

(6.17) 

respectively. The remaining task, also described in Appendix B, is to develop efficient 
algorithms for the explicit evaluation of the above integrals, whose integrands 
contain triple products of Hankel functions. This is achieved by use of Hankel's 
asymptotic expansions. The simplest approach would be to use the leading-order 
terms of the asymptotic expansions, substituting these into (6.16) and (6.17). The 
infinite integrals would follow in the form of Fresnel integrals and could be evaluated 
explicitly. In this approach, however, the chosen value of r, would have to be very 
large (especially for large m),  if the leading-order approximation were to yield 
sufficient accuracy for r greater than r,. For smaller rs, the leading-order terms are 
not sufficiently accurate by themselves. They can however be amended by residual 
corrections, which are based on subsequent terms of the asymptotic power series (cf. 
(B 6) and (B 7)  in Appendix B). In this manner, more refined approximations for the 
integrands can be obtained. 

It may be observed that the leading asymptotic in these series does not depend on 
the order m ; the coefficients of the full asymptotic expansions do however involve m : 
equations (B 6) and (B 7) are not uniform with respect to m. For a given value of the 
argument x there exists an optimal term at which truncation of the asymptotic series 
yields the maximal accuracy and the function is approximated to an error within the 
size of this term (see Bender & Orszag 1978 for example). The accuracy cannot be 
improved by merely taking more terms in the partial sums, but only by increasing 
the value of x. Moreover, the smallest value of x at which the approximation is 
accurate increases with the value of m. Thus for the purpose of calculating IF,, one 
has to use different values of rs for different values of m. 

In the analysis performed here, an adaptive procedure has been adopted. This 
enables one to overcome the apparently limited accuracy associated with the optimal 
truncation for given r,, and provides any degree of accuracy as long as a sufficient 
number of terms of the series is used. This is because the larger r, is, the more 
accurate the asymptotic series can be, because the size of the optimal truncation 
term is smaller. The exact location of the optimal term is not critical and the choice 
of r, is made adaptively. The infinite line integral is therefore now written 

(6.18) 
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I 

F: 
v 

g 
d 

Radial distance, r / a  
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FIGURE 1.  Fourier harmonics of free-surface effective pressure (d/u = 3, ku = 1 )  : -, analytical 
expression ; - - - - - , approximation based on Hankel asymptotic expansion ; - * -  , approximation 
baaed on first term of asymptotic expansion. (a) Re[F,(r)]; ( b )  Im[Fo(r)]; (c) Re[F,(r)];  ( d )  
Im [F&)I. 

The first integral on the right is computed numerically (say with the Gaussian 3- 
points adaptive technique) by using the exact representation for the Hankel 
functions ; while the second integral is evaluated explicitly after substituting the 
Hankel asymptotic expansion. The integration limit of the finite integral is then 
progressively increased and the new value can be added to the integration from r,, to 
r,l such that J:, = C.C. (6.19) 

The last integral of the asymptotic series is re-evaluated each time. This procedure 
is then repeated until convergence is obtained by comparing the values of several 
successive approximations. A similar idea has been used by Eatock Taylor & Hung 
(1987) except that in their analysis, only the leading asymptotic term was retained. 

The effectiveness of using terms beyond the leading asymptotic term may be 
demonstrated by some calculated results for the effective pressure on the free surface. 
In figure 1, the exact expression for the pressure term given in (6.11) is plotted 
against the radial distance, and compared with the results approximated by the 
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(a)  L m n 

1 2 3  
5 3 6  
9 9 12 

11 11 14 
14 9 17 
12 12 15 
13 13 17 

( b )  L m n 

1 2 3  
5 3 6  
9 9 12 

11 11 14 
14 9 17 
12 12 15 
13 13 17 

Asymptotic expansion 
of integral 

(0.001 886, 0.003 742) 
(-0.006758, 0.002 120) 
(-0.011 812, -0.034072) 

(-0.361 132, 0.022987) 
(-0.040433, -0.246565) 
(-0.24O852, 0.712 168) 

(0.109 89 1, 0.000 47 1) 

Asymptotic expansion 
of integral 

(-0.030 152), -0.020504) 
(-0.038240, 0.000367) 

(0.029192, -0.064118) 
(-0.115777, 0.086181) 

(0.366716, -0.028 274) 

(0.201 465, -0.757 932) 
(0.110646, 0.261 059) 

Gaussian quadrature 

(0.001 886, 0.003 742) 
(-0.006758, 0.002 120) 
(-0.01 1812, -0.034072) 

(-0.361 132, 0.022987) 
(0.040433, -0.246565) 

(-0.240853, 0.712166) 

(0.109891, 0.000471) 

Gaussian quadrature 

(-0.030 152, -0.020504) 
(-0.038240, 0.000367) 

(0.029 192, -0.064 118) 
(-0.115777, 0.086181) 

(0.366 7 16, -0.028274) 

(0.201465, -0.757929) 
(0.110646, 0.261059) 

TABLE 1. Numerical verification of the asymptotic expansions of the integrals: (a) expression 
(6.16); ( b )  expression (6.17) 

leading asymptotic and the asymptotic form truncated at the term M ,  (defined in 
equation (B 8)). F, is the mth Fourier harmonic of the free-surface effective pressure 
F(r ,  0). Here real and imaginary components of F,(r) for m = 0 and m = 4 are plotted 
against r for a uniform vertical cylinder (radius = a )  at ka = 1, in water of depth 3a. 
It is clearly seen that the accuracy and the range of validity of the asymptotic 
approximation are drastically improved by including more than just the leading 
term in the asymptotic series. One can also observe from figure 1 that even with a 
small number of terms, the asymptotic series is dependable for relatively small values 
of rla.  

These techniques have led to an effective method for evaluating the integrals in 
(6.16) and (6.17). Table 1 provides some illustrative results for the case ka = 1,  d l a  
= 3, obtained over the finite interval [10a, lla] for an increasing series of values of 
1,  m, n (the orders of the three Hankel functions in the integrand). Tables 1 (a)  and 
1 (b )  relate to equations (6.16) and (6.17) respectively. The results are compared with 
those obtained by Gaussian quadrature (relative error lo-') of the exact 
representation of the Hankel functions. It is seen that discrepancies only occur at the 
sixth decimal place (at the bottom of the table). In comparison with a similar table 
given by Kim & Yue (1989), the present method introduces less error a t  the higher 
orders. (In their approach, Chebyshev polynomials were used to represent the 
Hankel functions while the resulting infinite integrals were expressed in terms of 
Fresnel integrals.) 

To give an indication of the convergence of the procedure, calculations of I., are 
presented here for a uniform vertical cylinder for three Fourier modes (m = 0, 5 and 
10). In this and subsequent analyses, the radius a of the cylinder is taken to be equal 
to the water depth d ,  and ka = 1. The results are given in table 2. Here rs, is chosen 
to be 2d and the step length As is given by 

As = rs,,+l-rs,j = 27c/(2k+~). (6.20) 

From the results presented, it is clear that the rate of convergence of the integral I F ,  
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' p m  
No. of 
steps 

1 

2 

3 

4 

5 

6 

7 

8 

9 

m = O  

(1.03647 x 

(1.03493 x 
- 1.803 12 x 

( 1.035 07 x 
- 1.803 10 x 

(1.03500 x 
- 1.803 16 x 

- 1.80242 x lo-') 

- 

m = 5  

(5.76233 x lo6 
2.34660 x lo6) 

(-0.97623 
-9.05625) 

(5.98646 x 
- 5.833 35 x 

(5.98550 x 
-5.83763 x 

(5.985 13 x 
-5.83722 x 

(5.98530 x 
-5.83731 x 

m = 10 

( - 1 .554 79 x 1015 
- 1.815 32 x 10") 

( -1 .79377~  lo8 
1.565 74 x lo0) 

(7.45227 x lo3 
1.68548 x lo3) 

(-7.99964x 

- 1.582 35 x 10-5) 
( - i .246 94 x 10-5 

- 1 m490  x 10-5) 
( - i ,245 93 x 10-5 
- 1.58505 x 

( - 1.245 95 x 
- 1.585 26 x 

- 1.865 92 x lo-') 
( - 1 . 2 3 4 2 1 ~ 1 0 - ~  

- 1.584 92 x 
( -  1.246 14 x 

TABLE 2. Convergence of IF, when adaptive integration is used in conjunction with the 
asymptotic approximation (real part and imaginary part) 

is very satisfactory. The corresponding integrals which are defined over the finite 
intervals may be evaluated very accurately by means of the Gaussian 3-points 
adaptive method. The algorithm is based on successive subdivision of each 
integration range into finer intervals in such a way that all integration points of the 
coarse interval are contained in the finer interval. Values of the integrand computed 
at each step of the calculation are then used in subsequent steps. 

There remains just one aspect which requires careful attention. This concerns the 
occurrence of a weak singularity a t  the free surface, which would be expected to lead 
to slow convergence (i.e. a large number of integration points) when the field points 
are in the vicinity of the free surface. The nature of the singularity is established in 
Appendix C and it is shown how convergence of the numerical integration can be 
improved by subtracting out the singularity. 

7. Numerical results and discussion 
The availability of the closed-form expression for the second-order solution for a 

vertical cylinder furnishes a source of validation for the general numerical methods 
which are being developed for bodies of arbitrary geometry. Results obtained for this 
simplest three-dimensional body can also provide valuable physical insight, and 
enhance the understanding of nonlinear wave effects on more realistic structures in 
the ocean. 

Although reliable results for the second-order potential and the related physical 
quantities are extremely scarce, it is possible to validate the present formulation by 
comparing results with those from a numerical method described by Kim & Yue 
(1989). Only terms due to the contribution of the second-order diffraction potential 
have been chosen for comparison, since the calculation of other terms is trivial for the 
case of a circular cylinder. Figures 2 ( a )  and 2 ( b )  show the pressure distributions down 
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FIGURE 2. Dimensionless pressure on generator of a vertical cylinder (d /a  = 1, vu = 2) ; - - - - -, lp(')l; 
3F Z).-.- 2 , Ipi2)l; -, Ipiz)I ; 0, Ipia)I (Kim t Yue 1989). (a) 0 = 0' (downwave) ; (a) 0 = 180" 

(upwave). 
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FIGURE 3. Dimensionless wave elevation around the circumference of a vertical cylinder ( d / a  = 1, 
y a  = 2) : - - - - -, I + ) l ;  , I I  -2,. 2 - .-, l ~ \ ~ ) l ;  -, l ~ ~ z ) l ;  0, laiz)I (Kim & Yue 1989). 

the generators corresponding to 8 = 0" (downwave) and 180" (upwave) respectively. 
For illustration, the first-order quantities and components of the second-order 
quantities derived from the analytical solution are also plotted in the figures. The 
notation, also used by Kim & Yue (1989), is as follows : p ( l )  is the first-order pressure ; 
jP) is the mean second-order pressure (which is real and negative) ; piz) is the second- 
order oscillatory pressure contributed by quadratic products of first-order quantities ; 
and p p )  is the second-order oscillatory potential due to qV2). The cylinder is of radius 
a, in water of depth a, and va = 2. In order to facilitate comparisons, the first- and 
second-order quantities are non-dimensionalized by pgA and pgA2/a respectively ( A  
being the wave amplitude). In figure 2 one observes a close agreement between the 
two sets of results for p p ) .  Moreover, it  can be seen that p g )  is in fact larger than the 
other second-order quantities. Hence for estimation of second-order wave forces 
under these particular conditions, it would seem essential to include the contribution 
of piz) in the analysis of the second-order oscillatory force. 

Components of the wave elevation runup as a function of the azimuthal angle are 
plotted in figure 3, where the first-order and second-order quantities are non- 
dimensionalized by A and A 2 / a  respectively. The notation is similar to that used for 
the components of pressure. It is again observed that good agreement is obtained 
between the present results and those due to Kim & Yue. Moreover, the magnitude 
of the runup contributed by the second-order potential is also comparable with the 
other second-order quantities, and it shows larger variations along the waterline, 
especially between 8 = 0" and 8 = 90" (i.e. on the lee side). 

In  order to demonstrate the relative importance of the first- and second-order 
quantities, it is useful at this stage to provide a practical example demonstrating the 
significance of the second-order effects as the wave steepness E increases. We consider 
a vertical cylinder of radius 12.5 m, which is typical of a column of a tension leg 
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FIGURE 4. Components of pressure down the upwave generator (0 = 180’) of a vertical cylinder of 
radius 12.5minawaveof 10sinwaterofdepth 100m:- -A- - ,  ~ p “ ’ ~ , ~ = 0 . 0 5 ; - - 0 - - , ~ ~ ~ ~ ’ ~ , ~ = ~ . ~ ~ ;  
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FIGURE 5. Components of wave elevation around the circumference of a vertical cylinder of radius 
12.5 m in a wave a 10 s in water of depth 100 m :  --A--, Iq(l’1, B = 0.05; --0--, 1q(”), B = 0.10; 
-A-, l~~”1, E = 0.05; -0-, (qi*)l, B = 0.10. 
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FIGURE 6(a-c). For caption facing page. 
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FIGURE 6. Isometrics of instantaneous dimensionless wave elevation Re[yP) e-aim] due to the 
second-order potential) near a vertical cylinder (d/a = 1 ,  ka = 1.4), at intervals of one tenth of a 
wave period. (a) t = 0 ;  (b)  t = 0.12'; (c )  t = 0.22'; (d) t = 0.32'; (e) t = 0.4T. 

platform. For such a cylinder standing in water of depth 100 m and subjected to a 
10 s wave, the vertical distributions of the magnitudes of the first-order pressure lp(')l 
and the second-order pressure due to the second potential [pi2)l, along the upwave 
side of the cylinder, are shown in figure 4. Results corresponding to two different 
wave steepnesses, B = 0.05 and a fairly steep wave B = 0.1, are superimposed on the 
same diagram. (Here 6 is defined as the wave height divided by the wave length.) 
These results show the importance of the second-order effect in the steeper wave. 
Similar results for the runup are given in figure 5. They also make the obvious point 
that despite being only a correction term, the second-order effects which are 
proportional to the square of the wave elevation become progressively more 
important in higher sea states. In  an irregular sea state, moreover, the incident wave 
system consists of a continuous spectrum of frequency components (e.g. described by 
the JONSWAP spectrum). In the frequency band well above the peak frequency of 
the spectrum, the contribution of the second-order component may be substantially 
higher than that due to the first-order component. This is because the pair of primary 
wave frequencies associated with the second-order quantities may lie in a frequency 
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band near the peak frequency ; whereas the first-order component being well above 
the peak frequency, the energy in the incident wave is hardly significant. 

Useful qualitative information about the second-order behaviour can also be 
obtained through isometric plots of the instantaneous second-order free-surface 
profiles. Such plots are shown in figure 6 for the same cylinder ( d / a  = 1) used in the 
analysis leading to figures 2 and 3. The wave amplitude is one tenth of the radius and 
the axes of the isometrics are non-dimensionalized by the radius. The results are 
presented at intervals of one tenth of the wave period T for the case ka = 1.4. This 
interval corresponds to one fifth of the period of oscillation of the second-order 
quantities. The time is taken as zero when the crest of the incident wave has reached 
one quarter of a wavelength beyond the origin of spatial coordinates. The appearance 
of series of short curved waves at  the downwave side of the cylinder is particularly 
noticeable. 

Several interesting features are revealed by the second-order results, and among 
them the vertical variation of the potential on the body surface has particular 
physical importance. Because details concerning this behaviour have been discussed 
extensively in Eatock Taylor et al. (1989), only a summary is given here. 

( a )  The magnitude of the order diffracted potential decays slowly and may even 
increase with water depth. This implies that the resulting hydrodynamic pressure 
can penetrate deeper into the water column than the linear wave-induced pressure. 
It is indicative of the slow convergence of the corresponding second-order wave force 
with increase of water depth. 

( b )  The rate of decay with depth of the magnitude of the second-order diffracted 
potential down the upwave side of the cylinder is found to be less rapid than on the 
downwave side. This phenomenon seems to be consistent with the behaviour of the 
second-order diffracted potential in the far field. It is therefore reasonable to assume 
that a connection exists between the far-field behaviour of the free-surface boundary 
condition and the near-field solution (as has recently been demonstrated by Newman 
1990). 

( c )  Owing to the significant influence of the second-order incident potential, the 
behaviour of the second-order diffracted potential in shallow water is substantially 
different from that in deep water. Moreover, the depth-dependence is much less 
pronounced at  higher frequencies. 

(d )  Compared with the first-order potential, it has been found that the second- 
order potential varies rapidly in the azimuthal direction near the free surface. At  
greater depths, however, the azimuthal variation becomes more gradual, and similar 
to that of the first-order potential. 

Finally we note that the results obtained by Kim & Yue (1989), using a numerical 
method developed for axisymmetric bodies, are in good agreement with the 
analytical solution presented here. This analytical solution has also been used to 
validate a numerical procedure for second-order diffraction by arbitrary three- 
dimensional bodies, as described by Chau (1  989). 

This work was supported by the Croucher Foundation (Hong Kong) and by the 
joint SERC-industry managed programme on Floating Production Systems through 
the Marine Technology Directorate Ltd. 
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Appendix A. Discussion of the free-surface boundary condition 

respectively, and denoting 
On substituting the expression for Z , ( K ~ Z )  and Z,,  from (4.9) and (5.6) 

one can rewrite (5 .2)  as 

where 

Division of the above integral into two, i.e. from a to ro and from ro to infinity, 
gives 

By use of Bessel's equation, there follows 
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Inserting the lower and upper limits into the terms in the square brackets, and 
making use of the relationships 

W m ( ~ ,  a) = 0, (A 8) 

one can now write (A 7 )  in the form 

Consequently, if similar procedures are applied repeatedly to the integral on the right 
of (A l l ) ,  one obtains 

Substituting (A 12) into (A 3) yields 

+higher order terms in - . ' I  2k sinh (2kd)  - 4v cosh (2kd)  

r-a 4k2 + K: Kn 

(A 13) 
Now 

-4  cos ( ~ , d )  sin ( K , ( Z ~ + ~ ) )  

sin ( 2 ~ ,  d )  + 2 ~ ,  d 
16v cos ( ~ , d )  cos ( K , ( z ~ + ~ ) )  

K, (sin ( 2 ~ ,  d )  + 2 ~ ,  d )  
- 

= e m c (  fl-0 

where [...I denotes the terms inside the square bracket of (A 13). By use of 

41, cos ( K ,  d )  = - K,  sin ( K ,  d )  (A 15) 

(A 14) may then be reduced to 

4 sin ( - K ,  zo)  
sin ( 2 ~ ,  d )  + 2~~ d 

m 

[...I. 
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For large values of n, ~ , d + n n ;  from this and the asymptotic expression for the 
Bessel function K,, the terms inside the square bracket are found to have the form 

1 [ Fm(ro)-- nt(:)” - exp (-F - ( r o - a )  

x {li’,(a)+DL (2k sinh (2kd)-4v  cosh ( 2 k d ) ) )  I r m a  
+higher order terms in ($)I - Fm(ro) for large n. (A 17)  

Substitution into (A 16) yields 

4 sin ( - K,  zo)  * 4sin ( -nxx , /d )  N-1 

[ * * - I + e m F m ( r o )  C 2nx , 
n=O sin ( 2 ~ ,  d )  + 2~~ d n-N 

(A 18) 
where N is sufficiently large. Hence 

Since zo < 0, it is clear that 0 < ( -nzo /d )  < 2n. Hence from Jolley (1961) 

* sin [n( - x z O / d ) ]  
lim x 
z,+O n-N n Zo+O 

= lim +(x + n z O / d )  = in. 

Substituting (A 20) into (A 19), one obtains 

or 

= m . 0 ,  44. (A 2-21 
This demonstrates that the inhomogeneous free-surface boundary condition is in fact 
satisfied by the solution of $i2) given in (5.2). 

Appendix B. Evaluation of the infinite integral 
The infinite integral on the right-hand side of (6.14) can be written as 

ia m 

tanh2 ( k d ) - 1 )  [S,-,S,+2T,-,Sq] 

a a 
ar ar 

+ 2 - Tm-, - q]} H,(Kr). 

In  this form, contributions from the evanescent modes and the circumferential 
derivatives at  large values of r have been neglected. Integrating by parts three times 
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and using the Bessel differential equation, one can show that the integral terms 
containing the r-derivatives may be replaced by new integrals which are free from 
derivatives, plus some residual terms evaluated at r,. This has been found 
advantageous for the purpose of numerical implementation. The resulting expression 
for IFz can then be written as 

where 
03 

I., = ( 3  tanh2 ( k d ) + l ~ ~ - ~ ~ )  [ ~ , - g ~ g + 2 ~ m - q S q ] H m ( ~ r ) .  (B 3 )  

To evaluate the resulting integrals which involve triple products of Hankel 
functions, Hankel's asymptotic expansions seem to be the most convenient starting 
point. As defined by Abramowitz & Stegun (1972) 

where 

(-1)'T(;+m+21) 
= 5 2 1 ) ! T ( f + m - 2 4  (242" 

( - l) 'T(%+m + 21) m 

For the purpose of calculating the integral from r, to infinity, the asymptotic series 
Pm(x) and Qm(z) must first be truncated a t  some finite number of terms. It is known 
that whenever i > h, the remainder after L terms in the expansion of Pm(z) will not 
exceed the (i+ 1)th term in absolute value. Similar considerations hold for &,(z). A 
simple rule for obtaining a good estimate can therefore be achieved by truncating 
P m ( z )  and Q m ( z )  at 

1 = M ,  = ++2. (B 8) 
The various terms in the asymptotic series may now be obtained as follows. We use 
(B 2) in the form 

where c,, = 1 (B 10) 

(B 11) 
i'(4m2 - 1) (4m2 - 3 )  . . . (4m2 - (21 - 1)2) 

1 ! 8' Cmt = 
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A rccursive relationship for Cml can readily be derived and given as 

i(4m2-(21+ 1)2) 
8(1+ 1) c m i .  Cm,c+l  = 

Integral (6.16)' which is based on the first part of the integrand in (B 3), may now 
be written as a triple sum 

wherc 

Similarly (6.17) becomes 

where 

The integrals in (B 13) and (B 15) are of the form 

with a = 2 k + ~  or a = K .  They can now be evaluated by the method of asymptotic 
expansion of integrals. Integration by parts is employed to derive the recurrence 
formula 

which readily leads to the power series 

The truncation error EN is given as 
(n+N- i ) !  1 eiar 

dr  - EN = ,n+N+$* 

One therefore has 
n + N - i ) !  1 

From this it may be concluded that the truncation error always has the same order 
of magnitude as the last remaining term in the series (B 19). With this in mind, one 
can formulate a simple rule for obtaining good numerical results by considering the 
ratio of the (N+ 1)th term in (B 19) to the Nth term, i.e. 
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The successive terms decrease steadily in magnitude as long as n + N - +  < ars, but 
increase unboundeclly in magnitude with increasing N .  The best estimate would then 
be obtained by choosing N as 

N = greatest integer less than [a?-,-n]. (B 23) 

Appendix C. The nature of the singularity at the free surface 
The following discussion is based on some ideas presented by Fenton (1978). We 

note first, by examination of the integrand in the expression (5.2) for q5:2), that all 
terms associated with n = 0 are finite. This is not the case however for the 
corresponding terms with n > 0. To see this, let 

Substitution of the expression for Z , ( K , Z )  given in (4.9), gives 

- Z(K;  + 16~ ' )  
cos (Kn(Zo+d)) cos (Knd) - - L,%>O --d(~i  + 16v2) + 41, 

For large n, one can show that 
K n  = -+o(i) nx 

d 
Hence it can be deduced that 

-2(~2,  + 1 6 ~ ~ )  2 
- d ( K i +  16v2)+4v 

and cos (Kn(Zo+d)) cos (K,d) x cos n(xz, /d) .  (C 5 )  

Recalling the asymptotic expansions for I ,  and K ,  given in Abramowitz & Stegun 
(1972), i.e. 

(C 6) 
ex 

l m ( 4  x 3 for large x, 

K,(x)  x (x/22$e-x for large x, 

one sees that the products of the Bessel functions behave as 

I1 x---i[exp d 1  [ - - ; i - - ( 7 , - r < ) ] + e x p [ ~ ( r , + r < - 2 a )  - nx - nx . 
2nx ( r ,  r<)s 

(C 8) 
Defining the asymptotic form of L,, as n+co by L%n, one has therefore 
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Hence 

The infinite sums can be obtained from Jolley (1961), leading to 

m - 1  1 - 27c 

n-1 

-1 1 

(C 11) 

Except for the case ro = a, it is the first term which contributes as zo + 0, r -+ To. For 
ro = a 

" 
cos(xz,/d)+exp 

n-1 

(C 12) 

One now expands the exponential function and cosine function in powers of their 
arguments in (C 11) and (C 12), which as r >  + r < ,  zo+O, gives for ro =I= a 

for ro = a 

The resulting expressions show the logarithmic nature of the singularity, and hence 
the infinite series (for n) in the integrand of (5.2) does not converge at  some points. 

The efficiency of the numerical integration can, however, be improved by 
subtracting out the singularities. To illustrate this, let us consider the simplest case 
with ro = a and zo = 0, and write 

[rdrFm(r) X L,, = [ r d r F m ( r )  C {L , , -L~ , }+  rdrFm(r) n-1 X L&. 

The contribution for r > rs is evaluated using (B 2). Substituting (C 14) into the last 
integral, one obtains 

W co 03 

(C 15) 
n-1 n-1 1 

03 [ drFm(r) c L m n  
n-1 

The fist integral in the above expression is non-singular and can therefore be 
evaluated using Gaussian quadrature as before. The second integral, however, has a 
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logarithmic singularity and may be evaluated by a special numerical scheme with 
In ( 6 )  weighting coefficients. 

An alternative method of performing the second integral in (C 16) is also possible, 
which relies on a nonlinear transformation whose Jacobian smoothes out the 
singularity (Telles 1987). One rewrites the second integral in (C 16) as 

I = LdrF',(r) In [:(.-a)], 

(C 18) 
-2  1 

where P,(r) = -(r/u)SF,(r). 

By means of the linear transformation 

7c 

r = i(r,-a)E+i(r,+a), (C 19) 

the integral can be written as 

If a second-order transformation is then chosen such that 

E = k'+q-i, (C 21) 
expression (C 20) can be written as 

I =  i ( . , - a ) S _ ~ d q ( n + l ) ~ ~ ( q )  In [ a c r , - a ) ( ~ l d ) ( ~ 2 + n + $ ) 1 .  (C 22) 

Standard Gaussian integration can now be employed for the evaluation of (C 22) 
because the Jacobian cancels the logarithmic singularity a t  7 = - 1 (i.e. a t  r = a in 
the original integral). This alterative procedure has not, however, been implemented 
in the computer program used to  generate the results presented in the paper. 
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